Note

Structural studies of a hemicellulose B fraction from the cork of Quercus suber*

AMPARO ASENSIO

Department of Organic Chemistry, University of Valencia, Burjassot, Valencia (Spain) (Received November 24th, 1986; accepted for publication, January 28th, 1987)

Hemicellulose A, isolated from the cork of Quercus suber, is a xylan having β -(1->4)-glycosidic linkages. Hemicellulose B has now been fractionated, using Fehling's solution², into B-1 and B-2, and the structure of the pure hemicellulose B-1 is now reported.

B-1, which contained xylose, 4-O-methylglucuronic acid, arabinose, galactose, mannose, and glucose in the molar ratios 135:12:7:11:2:30 together with traces of rhamnose, was purified by complexing with Fehling's solution. Purified B-1 appeared to be homogeneous on gel-filtration on Sephacryl S-400 and had $[\alpha]_D$ -61.5° (c 1, aqueous 1% sodium hydroxide). The molar ratios of xylose, 4-Omethylglucuronic acid, and arabinose were then 170:13:3, and there was some arabinose and traces of hexoses.

Hakomori methylation³ of B-1 gave a product with $[\alpha]_D - 32.5^\circ$ (chloroform) indicative of β linkages, which was confirmed by the n.m.r. spectra⁴ (δ 4.3 for H-1 and δ 102.55 for C-1). The methylated polysaccharide was reduced with lithium aluminium hydride and then hydrolysed, and the sugars were analysed, as the partially methylated alditol acetates, by g.l.c. and g.l.c.5-m.s.6. The results are summarised in Table I. The formation of a small proportion of 2,3,5-tri-O-methylarabinose indicated the existence of 1 terminal arabinofuranosyl group per 56 xylose residues. The formation of 2,3,4-tri-O-methylxylose and 2,3,4-tri-O-methylglucose indicated that xylopyranosyl and 4-O-methylglucopyranosyluronic acid groups were also present as terminal units. That the backbone consisted of $(1\rightarrow 4)$ -linked β -Dxylosyl residues was indicated by the formation of a large proportion of 2,3-di-Omethylxylose. Side-chains were attached to positions 2 of the xylosyl residues, as indicated by the formation of 3-O-methylxylose.

Identification of the 3-O-methyl-D-xylose was not possible by g.l.c. on

^{*}Quercus suber Polysaccharides, Part II. For Part I, see ref. 1.

ABLE I
roducts obtained by hydrolysis of the methylated (A) and methylated carboxyl-reduced -1 (B)

Sugarsa	<u>T</u> ⁶		Mole %	
	(a)	(b)	A	В
2,3,5-Me ₃ -Ara	0.51	0.69	4.3	1.5
2,3,4-Me ₃ -Xyl	0.63	0.75	2.5	7.0
2,3-Me ₂ -Xyl	1,43	0.91	83.8	73.4
3-Me-Xyl	2.70	1.08	9.4	11.5
2,3,4-Me ₃ -Glc	2,35	1.20		6.6

²2,3,5-Me₃-Ara = 2,3,5-tri-O-methyl-L-arabinose, etc. ^bRetention times of the corresponding alditol acetates, relative to that of 1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl-D-glucitol on (a) ECNSS-M at 175°, and (b) OV-1 at 120-220° at 4°/min.

ECNSS-M, but it was identified by the fragments obtained by g.l.c.-m.s. of the partially methylated alditol acetates^{6,7}; the fragments with m/z 43, 87, 129, and 189 were the same as those of 3-O-methyl-D-xylose obtained in previous work¹. Mixtures of 2- and 3-O-methyl-D-xylose gave⁸ fragments with m/z 117, 129, 189, and 261. Fragments with m/z 117 and 261 are characteristic^{6,7} of 2-O-methylpentoses; hence, it is concluded that only 3-O-methyl-D-xylose was formed from B-1.

That the 4-O-methyl-D-glucuronic acid was α was established by the $[\alpha]_D$ value (+98°) of the aldobiouronic acid obtained by partial hydrolysis of the pure B-1 and which was identified as 2-O-(4-O-methyl- α -D-glucopyranosyluronic acid)-D-xylose by g.l.c.-m.s.⁹. Thus, hemicellulose B-1 was shown to be essentially a (1 \rightarrow 4)-linked β -D-xylan with 4-O-methyl- α -D-glucopyranosyluronic acid, D-xylopyranosyl and L-arabinofuranosyl groups attached at positions 2. For every 15 D-xylopyranosyl residues in the main chain, there was one uronic acid unit. For 13 such D-xylopyranosyl residues, there was one D-xylopyranosyl group, and for \sim 56 such D-xylopyranosyl residues, there was one L-arabinofuranosyl group.

EXPERIMENTAL

General methods. — Descending p.c. was performed on Whatman Nos. 1 and 3MM papers with A, ethyl acetate-acetic acid-formic acid-water (18:3:1:4); B, 1-butanol-ethanol-water (2:1:1); and C, 1-butanol-pyridine-water (6:4:3); and detection with diphenylamine-aniline¹⁰. Optical rotations were recorded with a Perkin-Elmer 141 polarimeter and i.r. spectra with a Perkin-Elmer Model 281 spectro-photometer. 1 H- and 13 C-n.m.r. spectra (internal Me₄Si) were recorded with a Bruker AC-200 (200 MHz) spectrophotometer. G.l.c. was performed with a Hewlett-Packard model 5710A chromatograph fitted with a flame-ionisation detector and a glass column (200 \times 0.6 cm) containing 3% of ECNSS-M on Gas Chrom Q (100-200 mesh) at 190° (alditol acetates) or 175° (partially methylated

alditol acetates). For g.l.c.-m.s., a Hewlett-Packard 5995B instrument fitted with a capillary column (12 m \times 0.2 mm) containing OV-1 was used. E.i.-mass spectra were recorded at 70 eV with a temperature programme of $100\rightarrow 220^{\circ}$ at 4° /min.

Hemicellulose B-1. — Holocellulose (34 g), isolated from the cork of Quercus suber, was extracted with aqueous 10% sodium hydroxide. Adjustment of the pH of the extracts to 5 with glacial acetic acid precipitated hemicellulose A. The supernatant solution was dialysed for 24 h against distilled water and the precipitate, which was formed by the addition of ethanol (4 vol.) at 0°, was collected by centrifugation (14,000 r.p.m. at 5°), washed with ethanol, and dried over phosphorus pentaoxide in vacuo, to give hemicellulose B (4.27 g), $[\alpha]_D - 8^\circ$ (c 5, aqueous 1% sodium hydroxide).

To a solution of hemicellulose B (4 g) in aqueous 5% potassium hydroxide (400 mL) was added Fehling's solution until precipitation was complete. The copper complex was collected by centrifugation, washed with aqueous 5% potassium hydroxide, and precipitated from a solution in water at 0° by the addition of ethanol (4 vol.). After storage at 0° for 1 h, the precipitate was collected by centrifugation, macerated at 0° with ethanolic 5% hydrogen chloride (1 min), then washed with ethanol, and dried over phosphorus pentaoxide in vacuo, to give B-1 (1.32 g), $[\alpha]_D$ – 21° (c 6.6, aqueous 1% sodium hydroxide). The process was repeated to give purified B-1 (719 mg), which had $[\alpha]_D$ – 61° (c 10, aqueous 1% sodium hydroxide).

Hemicellulose B-2 was isolated from the supernatant alkaline solution by precipitation with ethanol.

Sugar analysis — B-1 and purified B-1 (16 mg of each) were separately treated with aqueous 72% sulphuric acid (0.32 mL) for 1 h at 30°. The solutions were diluted with water (8.1 mL) and then heated for 3 h at $\sim 100^{\circ}$. myo-Inositol (2 mg) was added as internal standard, and each hydrolysate was neutralised (BaCO₃) and decationised with Amberlite IR-120 (H⁺) resin. Monosaccharides were detected by p.c. (solvents A-C) and quantified as their alditol acetates by g.l.c.¹². The contents of glucuronic acid in B-1 and purified B-1, determined by the carbazole method¹³ (using D-glucuronic acid as the standard), were 6.36 and 6.78%, respectively.

Hemicellulose B-1. — (a) Homogeneity. Gel-filtration chromatography was performed on a column (46×1.6 cm) of Sephacryl S-400 by elution with 0.5m sodium chloride at 0.5 mL/min. The column was calibrated with dextrans of known molecular weight (Pharmacia). Fractions were monitored by the phenol-sulphuric acid method 14 . A single band was obtained.

(b) Methylation analysis. To a stirred solution of sodium methylsulfinyl-methanide (prepared under nitrogen from 1.5 g of sodium hydride and 31 mL of methyl sulfoxide) at room temperature was added a solution of B-1 (200 mg) in methyl sulfoxide (5 mL). After stirring for 12 h, methyl iodide (5 mL) was added with external cooling. Stirring was continued for 7 h, water (100 mL) was then added, and the mixture was extracted with chloroform. The combined extracts were washed thrice with water, dried (Na₂SO₄), and concentrated to a yellow solid which was dried over phosphorus pentaoxide in vacuo at 40° for 2 days. A solution of the

product in benzene was diluted with light petroleum (b.p. $30-60^{\circ}$) to precipitate the methylated polysaccharide (149 mg), $[\alpha]_D - 32.5^{\circ}$ (c 16, chloroform). A portion (10 mg) of this material was hydrolysed conventionally and the resulting sugars were converted into alditol acetates¹⁵ and analysed by g.l.c. and g.l.c.⁵-m.s.⁶.

To a solution of another portion (31 mg) in dry tetrahydrofuran (15 mL) was added lithium aluminium hydride (150 mg), the mixture was boiled under reflux for 24 h and then worked-up in the usual way, and the reduced product was extracted into chloroform. The product had $\nu_{\rm max}$ at 3600 cm⁻¹ (OH) but not at 1735 cm⁻¹ (ester C=O). The product was hydrolysed as described above, and the resulting methylated sugars were converted into alditol acetates, and analysed by g.l.c. and g.l.c.-m.s.

(c) Partial hydrolysis. B-1 (0.5 g) was treated with 0.125M sulphuric acid for 90 min at 100°. The hydrolysate was neutralised (BaCO₃), basified with 0.1M potassium hydroxide, then passed through a column of Amberlite IR-120 (H⁺) resin, and concentrated. The syrupy residue was eluted from a column of Amberlite IRA-400 (AcO⁻) resin, first with water to yield the neutral oligosaccharides and then with aqueous 10% acetic acid to yield the acidic oligosaccharides. P.c. (solvents A-C) of the acidic sugars revealed an aldobiouronic acid in addition to 4-O-methyloglucuronic acid. Preparative p.c. (solvent A) gave the aldobiouronic acid (11 mg), $[\alpha]_D + 98^\circ$ (c 1, water), which was converted into the methyl ester methyl glycoside by treatment with boiling methanolic 3% hydrogen chloride (5 mL) for 20 h, and the product was acetylated with acetic anhydride-pyridine (1:1) for 24 h at room temperature. Conventional work-up gave a product which, when subjected to g.l.c.-m.s. 9, was shown to be methyl 3,4-di-O-acetyl-2-O-(methyl 2,3-di-O-acetyl-4-O-methyl- α -D-glucopyranosyluronate)- α -D-xylopyranoside.

ACKNOWLEDGMENT

The author thanks Dr. D. Manuel Menéndez Gallego (National Institute of Toxicology of Sevilla) for the g.l.c.-m.s.

REFERENCES

- 1 A. ASENSIO, Carbohydr. Res., 161 (1987) 167-170.
- 2 J. K. N. Jones and R. J. Stoodley, Methods Carbohydr. Chem., 5 (1965) 36-38.
- 3 S. HAKOMORI, J. Biochem. (Tokyo), 55 (1964) 205-208.
- 4 J. N. C. WHYTE AND J. R. ENGLAR, Can. J. Chem., 49 (1971) 1302-1305.
- 5 S. C. Churms, Handbook of Chromatography. C.R.C. Press, Florida, 1982, pp. 6-10.
- 6 H. BJÖRNDAL, B. LINDBERG, AND S. SVENSSON, Carbohydr. Res., 5 (1967) 433-440.
- 7 H. BJÖRNDAL, C. G. HELLERQVIST, B. LINDBERG, AND S. SVENSSON, Angew. Chem., 82 (1970) 643-674.
- 8 J. P. Gowda, D. C. Gowda, and Y. V. Anjaneyalu, Carbohydr. Res., 87 (1980) 241-248.
- 9 V. KOVÁCIK, S. BAUER, J. ROSÍK, AND P. KOVÁC, Carbohyr, Res., 8 (1968) 282-290.
- 10 R. W. BAYLEY AND E. J. BOURNE, J. Chromatogr., 4 (1960) 206-213.
- 11 R. L. Whistler and M. S. Feather, Methods Carbohydr. Chem., 5 (1965) 144-145.

- 12 J. S. SAWARDEKER, J. H. SLONEKER, AND A. JEANES, Anal. Chem., 37 (1965) 1602-1604.
- 13 T. BITTER AND H. M. MUIR, Anal. Biochem., 4 (1962) 330-334.
- 14 M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, *Anal. Chem.*, 28 (1956) 350-356.
- 15 H. BJÖRNDAL, B. LINDBERG, AND S. SVENSSON, Acta Chem. Scand., 21 (1967) 1801-1804.
- 16 P. C. DAS GUPTA, S. K. SEN, AND A. DEY, Carbohydr. Res., 48 (1976) 73-80.